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INTRODUCTION 

NUMEROUS situations ofpractical interest require a knowledge 
of heat and mass transfer from cylinders subjected to external 
flow of non-Newtonian fluids. Although some work has been 
reported on the flow of viscoelastic fluids around circular 
cylinders, experimental work on heat and mass transfer is very 
meagre. It is limited only to experimental measurements of 
heat transfer by Shah et al. [l], James and Acosta [2], 
Mizushina et al. [3,4] and Takahashi et al. [S], and of mass 
transfer by Luikov et al. [6] and Mizushina et al. [3]. Most of 
the results presented so far are confined to the high Reynolds 
number region. This investigation extends the experimental 
data to the low Reynolds number region and compares the 
effectiveness of power-law and Prandtl-Eyring models in 
predicting heat and mass transfer data. 

THEORETICAL BACKGROUND AND 
LITERATURE REVIEW 

Forced convection 
Acrivos and coworkers [ 1.7, S] presented an approximate 

solution for flow of a pseudoplastic fluid of infinitely large 
Prandtl number. Bizzel and Slattery [9] extended the 
Karman-Pohlhausen solution to power-law fluid. Wolf and 
Szewczyk [lo] obtained a Blasius series solution for 
pseudoplastic fluid. Mizushina and Usui [ll] extended 
Karman-Pohlhausen-Dienemann [12] approximate sol- 
utions to non-Newtonian fluids using both power-law and 
Prandtl-Eyring models. Their results revealed that the power- 
law model suffers from ‘zero defect’. 

For power-law fluid.obeying 

Acrivosandcoworkers[l, 7,8],forlaminarforcedconvection, 
obtained 

Nu = f(n)Re~‘(“+“Pr~‘3. (2) 

Using their own data, Mizushina and coworkers [3, 111 
showed that forpower-law fluidsequation(2)can beexpressed 
as 

Nn = 0.72n-0.4Re~i’n+1)pr~/3. (3) 

For a pseudoplastic fluid obeying the Prandtl-Eyring model 

they showed that 

Nu = 0.87ReE.48Prk’3. (5) 
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James and coworkers 12,131 reported that at low velocities, 
the drag coefficient and heat transfer coefficient for dilute 
polymeric solutions flowing laminarly past cylinders are 
identical to those for Newtonian fluids but have asymptotic 
values for sufficiently high velocities. James and Acosta [2] 
attributed it to the viscoelastic behaviour. Metzner and 
Astarita 1141 assumed solid-like behaviour in high Deborah 
number flows and explained it using the concept of boundary- 
layer thickening. Mashelkar and Marrucci [15] proposed the 
concept of an elastic boundary layer for explaining such 
anomalous transport phenomena. Ruckenstein and Ram- 
gopal [16] used a boundary-layer approach to explain this 
anomalous behaviour. They obtained a general equaion of 
the form 

NuPr~“[(De’+0.25)/Re]“* 

= 0.0897(De’+O.25){[4(9/(De’+0.25)+ 1)‘~4-1]2”-32”} 

(6) 

for the higher Reynolds number region. They arbitrarily 
modified the coefficients and exponents to get a relation 

N~Pr-“~[(lle’ +0.25)/Re]0.28 

= O.l489(De’ +0.25) { [36(1/(De’+0.25) + 1)3’4- 33]‘13 - 3”‘} 

(7) 

for the lower Reynolds number region and in better agreement 
with the results of James and Acosta [2]. For fluids with 
negligible elastic effects, i.e. De’ = 0, equation (7) reduces to 

NuPr- II3 = 0.966Re0.” (8) 

which is a Newtonian relation. 
Kumar et al. 1171 simply used the Newtonian and non- 

Newtonian Reynolds numbers and defined an effective 
viscosity as 

pe = K(D/U,)“-“I. (9) 

By substituting it in place ofn in various dimensionless groups 
for Newtonian fluid they obtained the corresponding groups 
for power-law fluid. 

Luikov et al. [6,18] correlated their mass transfer results by 

Sh = C Re;Sci’3 (10) 

where C = 0.31, M = 0.52 for n = 1 and C = 0.5, rn = 0.39 for 
n = 0.88. Takahashi er al. [S] used Acrivos’ approach and 
obtained a single-valued correlation 

Nu = 1.3Re0.35Pr1’3 I, A (11) 

for 0.78 < n < 1.0. 

Natural convection 
The situation of laminar natural convection heat transfer 

from a single cylinder, sphere, etc. to power-law fluids was 
analysed by Acrivos [l9]. Mass transfer equivalents of his 
asymptotic solution of the boundary-layer equation may be 
written as 

(12) 
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NOMENCLATURE 

A rheological parameter of Prandtl-Eyring Prs Prandtl number for Prandtl-Eyring model, 
model [kg m-l s-‘1 C,(AIB)I~ or (A/B)/&,, 

A’ constant Re Newtonian Reynolds number, DU,p/p 
B rheological parameter of Prandtl-Eyring model [s-‘1 Re, Reynolds number for Prandtl-Eyring model, 
B constant DU,pI(AIB) 
C constant Rcr Reynolds number for power-law model, 

C, heat capacity of fluid [J kg- i K - ‘1 D”UL--“p/K 
D cylinder diameter Cm] SC Schmidt number, p,/pD, 
De Deborah number, B’&‘,/D SC, Schmidt number for power-law model based 
De’ modified Deborah number, 2OOOU,8/D 

D, diffusivity [m’ s-‘1 
on Acrivos approach U,D Re;2’(“+“/D, 

SC:, Schmidt number defined by Acrivos for natural 

(Xi, Grashof number defined by Acrivos for power- convection, equation (14) 
law fluids for heat transfer, p:D”“(pgA0)‘-“/K’ SC, Schmidt number for Prandtl-Eyring model, 

Gri, Grashof number defined by Acrivos for power- (A/B)/@, 
law fluids for mass transfer, equation (13) Sh Sherwood number, K,D/D, 

; 
acceleration due to gravity [m s-s] Sh, Sherwood number for natural convection, 
consistency index of power-law model equation (I 2) 
[kg s”-* m-‘1 U, free-stream velocity [m s- ‘1. 

K, consistency index at bulk temperature 
[kg s”-* m-r] 

K, mass transfer coefficient [m s-‘1 

K, consistency index at surface temperature Greek symbols 
[kg s”-’ m-‘1 

i 

coefficient of volumetric expansion [K-‘1 
L length [m] parameter defined by equation (22) 
m constant thermal conductivity of solution 

h4 
flow behaviour index of power-law mode1 l?m 1 -1 K-1 
Nusselt number, hD/l P Newtonian viscosity [N s me21 

Pe P&let number, DU,pC,/l Pe effective viscosity [N s m-*1 
Pr Newtonian Prandtl number, C,,n/,l P density [kg mm31 

Pr, generalized Prandtl number, Pf density of fluid [kg me31 
C,DU, Re; zic”‘l’/l or U,D Re; 2i’nf1’/D, AP density difference [kg mm31 

Prb, Prandtl number defined by Acrivos for natural parameter defined by equation (16) 
convection, :S temperature difference [K] 

(P&,/A) (K/P,) 
Z/(1 +n,~(l-n,/cl +nj 

a relaxation time (s) 
X (D&&,)tX- 1)1/12(n+ 111 

=w shear stress [N m-‘1. 

for 

Gr”/(“+‘)ScX’/‘s”+i) > 36, Sc; > 10 Am 

where 

Gra, = 
pfDn+2(gAp)*-n 

K’pf-’ 
(13) 

and 

K Z/(i+n) 
SC; = - 

0 

D” -n)/(i +n) X 
Wn- 1)1/t2(1 +m)l 1 

Pf D, 
(14) 

The constant A’ is approximately equal to 0.55 and is a 
function of both n and characteristic dimension D. For 
cylinders, where the characteristic dimension used by Acrivos 
is cylinder radius, A’ varies from 0.36 to 0.45 for 0.1 < n < 1.5 
[20]. The only reported experimental work on natural 
convective contribution during external flow of non- 
Newtonian fluids is that ofyamanaka and Mitsuishi [21] who 
used Acrivos’ approach in treating their results for heat transfer 
from spheres to 2.61% aqueous methylcellulose, 5.5% aqueous 
CMC, 0.74% aqueous sodium polyacrylate and 1.48% 
polythylene oxide. Their asymptotic equation 

Nu - 2 = [(0.8660Z’3Pe1’3 -0.5530 -0.341)3’2 

+(0.44GrAt, /,n~l.+I,,p,,,.+l,),,,,,,(~~‘(~“+l) (15) 

where 

(T = - 2.415n3 + 6.738n’ - 7.868n + 4.740 (16) The diffusivity of benzoic acid in aqueous CMC solution 

correlated the data within an average deviation of &- 29.3%. 
This correlation was recommended to be used within the range 
of 

1.0 < Pe i 103, 1.6 x 10m6 < Gra, c 0.44, 

2.6 x lo4 < Pra < 6.4 x lo5 

and 

0.24 < ~@n+ 1)pr~n/(3n+ 1) < 74, 

EXPERIMENTAL 

The experimental set-up and procedure employed was quite 
similar to that used earlier [22,23]. A test cylinder weighed to 
the nearest 0.05 mg was mounted in a lO.O-cm-diam. Pyrex 
glass test column and was allowed to come in contact with the 
test fluid flowing at a known flow rate for a known interval of 
time. The resultant weight loss ofthe test specimen was used to 
calculate mass transfer rate. 

Test cylinders were prepared by compressing chemically 
pure benzoic acid (Sarabhai Merck, Baroda, India) in 
cylindrical moulds. The two ends of all cylinders used were 
masked with wax. Test fluids used were demineralised water 
and 0.5, 0.75, 1.0 and 1.5% aqueous solutions of H-V grade 
CMC powder (Robert Johnson, Bombay). The flow curves 
and rheological parameters of these solutions were 
determined either by a capillary tube viscometer or Synchro- 
Lectric viscometer. Table 1 gives the rheological parameters, 
density and molecular diffusivity for all the test fluids used 
in this work. 



Technical Notes 957 

Table 1. Physical properties of the test fluids 

Fluid 
Temperature 

(“C) n K P AIB D, x 106 

Water 30.0 1 0.00801 0.9956 - 9.476 
35.0 1 0.00724 0.9943 - 11.36 

0.5% CMC 32.5 0.97 0.0267 1.002 0.027 9.144 
0.75% CMC 32.5 0.92 0.302 1.003 0.31 8.808 
1.0% CMC 30.0 0.94 2.20 1.002 3.20 8.881 
1.5% CMC 30.0 0.89 7.10 1.003 8.90 8.399 

was determined by the rotating disk technique; its solubility 
by the ‘equilibrated solution’ method. The details of these 
techniques are reported elsewhere [24, 251. Physical 
properties for demineralised water were taken to be those of 
pure water [22]. 

RESULTS AND DISCUSSION 

The mass transfer coefficient k, exhibits the usual 
dependence on cylinder diameter, i.e. it decreases with 
increasing cylinder diameter. The L/D ratio, however, does not 
have any significant influence on k,. For further analysis, heat 
and mass transfer data of Mizushina er al. [3] have also been 
included. The Reynolds number range (Re, = 30-8000) 
covered by Mizushina et al. for non-Newtonian fluids is in the 
higherlaminar region and that ofpresent work (Re, = 0.0018- 
513) is in the lower (creeping flow) region. 

Mizushina et al. [3] showed that Nu(or Sh) cc n-o.4 and 
included it in their correlation, i.e. equation (3). This equation 
correlates their data with an average deviation of f7.8% 
(r.m.s. deviation = 9.4). Their results, however, do not show 
any appreciable scatter by neglecting the term n-O.“ and can 
be correlated by 

Nu(or Sh) = 0.759Reiiz(Pr, or SC,)“~. (17) 

In Fig. 1 their results are shown as Nu(or Sh) (Pr or SC)-r’s vs 
Re, plot, where Pr(or SC) is based on the effective viscosity 
defined by equation (9). The regression analysis shows that 

Nu(or Sh) = 0.7851ReE.s(Pr or Sc)“s (18) 

correlates the results with an average deviation of *7.5x 
(r.m.s. deviation = 8.5). The Prandtl-Eyring model-based 

equation (5) correlates these results with a deviation of _+ 5.8% 
(r.m.s. deviation = 6.7). 

A comparison ofthe average and r.m.s. deviations indicates 
that all the three approaches discussed above are more or less 
equally successful in correlating the higher laminar regime 
(Reynolds number 3 10) data. The least deviation, however, is 
obtained with the Prandtl-Eyring approach which indicates 
that for moderate non-Newtonian behaviour this model 
appears to be the most effective and simple approach of 
correlating the higher laminar regime heat and mass transfer 
data. 

Most of the data obtained in the present work are in the 
creeping flow regime. In this regime the Stokes or Oseen 
analysis has been applied to Newtonian heat transfer by 
several workers [26,27]. Hilpert [26] suggested a relation for 
air as 

Nu = 0.89Re113, 0.1 < Re -c 100 (19) 

which for fluids of arbitrary Prandtl numbers could be written 
as 

Nu = 1.002Re’/3Pr”3. (20) 

Oseen’s analysis of heat transfer in creeping flow as presented 
by Tomotika and Yoshida [28] resulted in 

where 

Nu=p’- (21) 

8’= 
2 

In (8/Pr. Re) -0.577’ 

I I I I 

Source : Mbrushina et al. (1978 ) 

A 0.235 0.78 
0 0.350 0.72 

100 I 1 / I/I.,l I / ,,I,,, I I// / I / //I 
101 102 109 104 11 

i 
D[ 

FIG. 1. Power-law model (effective viscosity approach) based correlation of heat and mass transfer data of 
Mizushina et al. [3]. 

(22) 
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FIG. 2. Power-law model based correlation of heat and mass transfer data. 
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FIG. 3. Power-law model (effective viscosity approach) based correlation of heat and mass transfer data. 

FIG. 4. Prandtl-Eyring model based correlation of heat and mass transfer data. 
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Table 2. Natural convective contribution (cylinder diam. = 1.65 cm) 

Model 

Acrivos 
Effective viscosity 

Prandtl-Eyring 

Loo/, Aq. CMC 1.5% Aq. CMC 

Equation Gr SC Sh Gr SC Sh 

Sh = 0.8Grali[z([Z’“+ l)$-a”/(3n+ 1) 0.67 2.5 x lo5 11.7 0.014 9.3 x lo5 8.5 
Sh = 0.53(Gr Sc)l“’ 0.132 2.4 x lo’- 10.2 0.04 1.0 x 106- 7.3 

3.1 x 10s 1.4 x lo6 
Sh, = 0.53(Gr&E)‘/4 0.490 3.6 x lo5 10.9 0.069 1.05 x lo6 8.7 

For low Prandtl numbers (Pr = 0.7) equation (21) breaks 
down at Re = 6 whereas for high Prandtl numbers (Pr 
> 500) it does so at Reynolds numbers as low as 0.001. Thus it 
cannot be applied to viscous non-Newtonian fluids where 
Prandtl of Schmidt numbers are very large. 

Present results along with the data of Mizushina et al. [3] 
are shown in Figs. 2-4 as (Sherwood number)(Schmidt 
number)- 1’S vs Reynolds number plots with dimensionless 
groups defined using effective viscosity, Acrivos and Prandtl- 
Eyring approaches, respectively. From these figures it can be 
concluded that for Re, < 10 (or Re, < 10) 

Sh cc (Re, or Re,)li3(Sc or SC, or SC,)“~ (23) 

irrespective of the approach used in defining these 
dimensionless numbers. The data in each case show gradual 
transition from the creeping to the higher laminar flow regime 
as observed for Newtonian fluids [29]. Further, the similarity 
intheextentofscatterofthedatapointsindicates that,formild 
non-Newtonian behaviour, in this regime all the three 
rheological approaches are more or less equally successful in 
correlating the experimental data. 

The asymptotic behaviour of heat transfer coefficient as 
reported by James and Acosta [2] is not observed in the 
present work. This is largely due to the use of highly 
concentrated polymer solutions (a 750&30,000 p.p.m.), 
larger diameter cylinders and low flow velocities. Under these 
conditions elastic forces are negligible. From Figs. 24it is seen 
that the data for 0.75% CMC solution do show an asymptotic 
trend, however, these are too limited to draw any definite 
conclusion. 

The regression analysis indicated that creeping flow regime 
(Re, or Re, < 10) data could be represented by 

Sh = A(Re, or Re,)li3(Sc, or SC or SC&/~ (24) 

where A is 2.18 for the Acrivos approach, 2.26 for the effective 
viscosity approach and 2.25 for the Prandtl-Eyring model. 
The corresponding higher Reynolds number regime data can 
be correlated by equations (17), (18), and (5), respectively. 

Figures 2-4 all show that natural convective contribution is 
significant for Re,(or Re,) i 0.01. The magnitude of these 
contribution as calculated from the various equations for 1.0 
and 1.5% CMC solutions (Table 2) are of comparable 
magnitude and are less than 10% of the total values of 
Sherwood numbers. Due to this no attempt has been made to 
account for natural convective contribution in the mass 
transfer correlations. 

It would also be appropriate to point out that Soehngen 
[30] observed that-at very low Reynolds number-viscosity 
plays a dominant role and boundary layers become 
comparable to body dimensions. Under such a situation 
boundary-layer theory does not hold good and the use of 
classical dimensionless parameters for representing data 
should be made with caution. These conclusions, however, are 
based on data obtained with thin wires (D 6 0.5 mm) and may 
not be true for large diameter cylinders as used in the present 
work. 
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